Poster Number	Poster Title	Thrust	Lead Presenter(s)
1	Integration of imaging modalities with omics characterization	1	Priyanka Priyadarshani
2	Exosome protein and cell surface signature: a critical quality attribute for CMaT	1	Ty Maughton
3	Variability Assessment and Omics Characterization of CAR-T Cells Through an Integrative Computational Pipeline	1	Nate Dwarshuis
4	Associated Project: Sub-microliter Metabolomics For Sample- limited Phenotyping via Mass Spectrometry	1	Yafeng Li
5	Associated Project: Machine learning for image-based early predictions of functional properties in cell manufacturing	1	Bruce (Hong Seo) Lim
6	Associated Project: A Multi-omics approach to discover metabolic critical quality attributes for cardiomyocyte biomanufacturing	1	Aaron Simmons
7	Associated Project: Multi-omic Characterization of Therapeutic Cell Sources	1	Linda Kippner
8	Associated Project: MSC Characterization and Pedictive Modeling	1	Pallab Pradhan
9	Development of real-time biosensors for monitoring cell and culture attributes during manufacturing	2	Chen Jiang and Zhaonan Liu
10	Dynamic sampling platform (DSP) for cell state analysis and dynamic bioreactor monitoring via in situ nanoESI-MS and FTIR/ATR-SEIRAS	2	Austin Culberson
11	Tissue-on-a-chip platform for mesenchymal stem cell potency	2	Becky Schneider
12	Associated Project: Scalable Transduction Device	2	Reggie Tran
13	Magnetoelastic Microcarriers for Real-time Tracking of Cell Loading	2	Salil Karipott
14	CAR T potency assay	2	Chaitanya Tondepu
15	Associated Project: Cord blood mononuclear cell quantification using Oblique back-illumination microscopy	2	Paloma Casteleiro Costa
16	Associated Project: Developing a microfluidics-based 3-D organoid system	2	Emily Jackson-Holmes and Jenni Li
17	Associated Project: Potentiometric chemical and biological sensor capsules for real-time measurement of cell properities in bioreactors	2	Billyde Brown
18	Associated Project: Smart Bioreactor with Integrated Flexible Sensors and Wireless Electroincs	2	Yun Soung Kim and Hyoryoung Lim
19	Improving the quality of iPSC-derived cardiomyocytes by providing intercellular cues during scalable manufacturing	2&3	Mark Stathos
20	Development of Novel Supply Chain and Process Modeling Algorithms, Methods, and Tools for Cell Therapy Manufacturing and Distribution	3	Brian Liu
21	Associated Project: Towards closed loop control of cell production	3	Milad Navaei
22	Analysis of the Cryopreservation's Effect of Cell Isolates and Manufactured Therapeutic Phenotypes	3	Britney Washington
23	Effects of Culture Substrate Parameters on MSC secretome	3	Gilad Doron
24	EAGER: BIOMANUFACTURING: A Microscale Testbed to Assay and Manufacture CAR T Cell Immunotherapies	3	Louise Saraspe
25	Assembly of novel gene editing particles to understand genome surgery in patient-dervied cells	3	Louise Saraspe and Brittany Russell

Poster Number	Poster Title	Thrust	Lead Presenter(s)
26	Undergraduate Poster: Optimization of NK92 Cell	3	Brittany Russell
	Electroporation for the Delivery of CRISPR-Cas9		
	Gene Editing Machinery for Homology Directed Repair		
27	RET: Culturation of MSCs for Confluency & Viability in a High	1	Stan Harrison
	School		
28	REU: Towards Development of a Reference Standard Curve for	1	Arafat Fayuyi
	Assessing MSC Potency and Comparability		
29	REU: Optimization of Synthetic Nanoparticle Antibody	1	David Frey
	Fabrication for Treatment of Critical Bone Injuries		
30	Project ENGAGES (Young Scholars Program): Degradable	1	Miranda Rivera
	Microscaffold Expansion of CAR T Cells for Immunotherapy		
31	Project ENGAGES (Young Scholars Program): Treatment of	1	Nathaniel Dobson
	Systemic Immune Dysregulation After Severe Musculoskeletal		
	Trauma Using Gold Nanoparticles		
32	Project ENGAGES (Young Scholars Program): Immune Cell	2	Kelsey Lawrence
	Interactions With Functionalized PEG-MAL Hydrogels		
33	REU: Optimization of a 3D Microfluidic Platform Modeling GBM	2	Rachel Fitzgerald
	Immune Evasion		5
34	REU: Investigating Synthetic Hydrogels in Bone Marrow-On-	2	Fernando Martínez
	Chip Devices		
35	REU: Enhancing Cardiac Differentiation and Potency of hiPSC	2&3	Kaiya Mitchell
	with Anisotropic Substrates		
36	REU: Testing and Analyzing the Mechanical Properties of Wet-	3	Carolina Colon
	electrospun Yarns for Tissue Engineering with Textile Arts		
37	REM: Fabrication of photocrosslinked hydrogels with various	3	Barry Bates
	ligands to support 3D MSC Culture		
38	REM: Assessment of the Ability of MSCs to Promote Muscle	3	Kasheena Box
	Regeneration Following Rotator Cuff Tear		
39	Puerto Rico and the Cell Therapies Manufacturing Global Value	IE	Liz Bonilla
	Chain		
	SubProject 1 : Detailed Mapping of the Existing		
	Pharma/Biotechnology Industry in Puerto Rico		
40	Puerto Rico and the Cell Therapies Manufacturing Global Value	IE	Diana Vélez
	Chain		
	SubProject 2: The Cell Therapies Manufacturing Global Value		
	Chain		
41	Puerto Rico and the Cell Therapies Manufacturing Global Value	IE	Diego Rivera Campos and
	Chain		Michelle Hernandez Torres
	SubProject 3: Commercialization Potential and		
	Commercialization Model for CMaT Innovations		