This invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 Lasing Solutions for Modification of Cell secretary activity, secreted factor up-regulation and sea for free media

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 Microfluidic Device for Immunotherapy Potency Assay

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 SARS-CoV-2 Infection of Vulnerable Human Cells

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 Novel Luminiscence Assay for Microfluidic Devices

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 Nanoscale Diffraction for Multifunctional Microfluidic Device

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.

6/1/2019 CMaT-1684 Microfluidic Platform for Immunotherapy Potency Assay

This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.


This technology is a modular cell culture platform that increases the viability of cells and the secretion of secreted proteins thereby improving cell proliferation with reduced serum levels. The invention overcomes a major cell manufacturing hurdle, reducing the dependence on serum and recombinant growth factors for cell culture and expansion, while promoting a highly potent cell phenotype.